Quadratic Formula Activity

Quadratic Formula:

For any quadratic in the form $y = ax^2 + bx + c$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Guided Practice:

Solve the following quadratic equation using quadratic formula:

$$x^2 - x = 2$$

Step 1: Write the equation in standard form.

The equation must be set equal to zero, so we subtract 2 from each side.

$$x^{2}-x=2$$
 $x^{2}-x-2=2-2$
 $x^{2}-x-2=0$

Step 2: Label a, b, and c

$$a = 1$$
, $b = -1$, $c = -2$

Step 3: Find the discriminant:

$$b^2 - 4ac$$

Plug into calculator with parentheses! Just like this...

$$(-1)^2 - 4(1)(-2) = 9$$

Step 4: Substitute values into the rest of the quadratic formula. Replace the discriminant with 9.

$$x = \frac{-(-1) \pm \sqrt{9}}{2(1)}$$

Step 5: Simplify signs, take the square root, and simplify the denominator.

$$x = \frac{1 \pm 3}{2}$$

Step 6: Split into 2 problems and solve.

$$x = \frac{1+3}{2} = \frac{4}{2} = 2$$

$$x = \frac{1+3}{2} = \frac{4}{2} = 2$$
 $x = \frac{1-3}{2} = \frac{-2}{2} = -1$

$$x = 2, x = -1$$

Step 7: Check your solutions by plugging your answers back in to the original equation.

$$x = 2, x = -1$$

Original:
$$x^2 - x - 2 = 0$$

$$(2)^2 - (2) - 2 = 0$$

$$(-1)^2 - (-1) - 2 = 0$$

$$4 - 2 - 2 = 0$$

$$1 + 1 - 2 = 0$$

More Guided Practice:

Fill in the missing values for the quadratic: $2x^2 + 3x - 65 = 0$

Find a, b, c:

$$a = [], b = [], c = []$$

Find the discriminant:

$$b^2 - 4ac = ()^2 - 4()() =$$

Plug in the formula:

$$x = \frac{-(\square) \pm \sqrt{\square}}{2(\square)}$$

$$x = \begin{bmatrix} 1 \pm 1 \end{bmatrix}$$

Simplify:

Split into two equations:

$$x = \boxed{ } \qquad \qquad x = \boxed{ }$$

Simplify:

$$x = \square$$
 , $x = \square$

Lesson 5-6

5-6 Study Guide and Intervention

The Quadratic Formula and the Discriminant

Roots and the Discriminant

Discriminant

The expression under the radical sign, $b^2 - 4ac$, in the Quadratic Formula is called the **discriminant**.

Discriminant	Type and Number of Roots	
$b^2 - 4ac > 0$ and a perfect square	2 rational roots	
$b^2 - 4ac > 0$, but not a perfect square	2 irrational roots	
$b^2 - 4ac = 0$	1 rational root	4
$b^2 - 4ac < 0$	2 complex roots	

Example Find the value of the discriminant for each equation. Then describe the number and type of roots for the equation.

a.
$$2x^2 + 5x + 3$$

The discriminant is

$$b^2 - 4ac = 5^2 - 4(2)(3)$$
 or 1.

The discriminant is a perfect square, so the equation has 2 rational roots.

b.
$$3x^2 - 2x + 5$$

The discriminant is

$$b^2 - 4ac = (-2)^2 - 4(3)(5)$$
 or -56 .

The discriminant is negative, so the equation has 2 complex roots.

Exercises

Complete parts a-c for each quadratic equation.

- a. Find the value of the discriminant.
- b. Describe the number and type of roots.
- c. Find the exact solutions by using the Quadratic Formula.

$$1. p^2 + 12p = -4$$

$$2.9x^2 - 6x + 1 = 0$$

$$3.\ 2x^2 - 7x - 4 = 0$$

$$4. x^2 + 4x - 4 = 0$$

$$5.5x^2 - 36x + 7 = 0$$

$$6. \ 4x^2 - 4x + 11 = 0$$

$$7. x^2 - 7x + 6 = 0$$

8.
$$m^2 - 8m = -14$$

9.
$$25x^2 - 40x = -16$$

$$10.4x^2 + 20x + 29 = 0$$

11.
$$6x^2 + 26x + 8 = 0$$

$$12. 4x^2 - 4x - 11 = 0$$

Lesson 5-6

5-6 Practice

The Quadratic Formula and the Discriminant

Solve each equation by using the Quadratic Formula.

1.
$$7x^2 - 5x = 0$$

2.
$$4x^2 - 9 = 0$$

$$3.3x^2 + 8x = 3$$

$$4. x^2 - 21 = 4x$$

$$5. 3x^2 - 13x + 4 = 0$$

6.
$$15x^2 + 22x = -8$$

7.
$$x^2 - 6x + 3 = 0$$

$$8. x^2 - 14x + 53 = 0$$

9.
$$3x^2 = -54$$

10.
$$25x^2 - 20x - 6 = 0$$

$$11.4x^2 - 4x + 17 = 0$$

12.
$$8x - 1 = 4x^2$$

$$13. x^2 = 4x - 15$$

$$14.4x^2 - 12x + 7 = 0$$

Complete parts a-c for each quadratic equation.

- a. Find the value of the discriminant.
- b. Describe the number and type of roots.
- c. Find the exact solutions by using the Quadratic Formula.

$$15. x^2 - 16x + 64 = 0$$

16.
$$x^2 = 3x$$

$$17. 9x^2 - 24x + 16 = 0$$

$$18. x^2 - 3x = 40$$

$$19.\ 3x^2 + 9x - 2 = 0$$

20.
$$2x^2 + 7x = 0$$

$$21.5x^2 - 2x + 4 = 0$$

22.
$$12x^2 - x - 6 = 0$$

23.
$$7x^2 + 6x + 2 = 0$$

$$24.12x^2 + 2x - 4 = 0$$

$$25. 6x^2 - 2x - 1 = 0$$

$$26. x^2 + 3x + 6 = 0$$

$$27.4x^2 - 3x^2 - 6 = 0$$

28.
$$16x^2 - 8x + 1 = 0$$

$$29.\ 2x^2 - 5x - 6 = 0$$

- **30. GRAVITATION** The height h(t) in feet of an object t seconds after it is propelled straight up from the ground with an initial velocity of 60 feet per second is modeled by the equation $h(t) = -16t^2 + 60t$. At what times will the object be at a height of 56 feet?
- **31. STOPPING DISTANCE** The formula $d=0.05s^2+1.1s$ estimates the minimum stopping distance d in feet for a car traveling s miles per hour. If a car stops in 200 feet, what is the fastest it could have been traveling when the driver applied the brakes?